奇异值分解(Singular Value Decomposition,SVD)是一种矩阵分解(Matrix Decomposition)的方法。除此之外,矩阵分解还有很多方法,例如特征分解(Eigendecomposition)、LU分解(LU decomposition)、QR分解(QR decomposition)和极分解(Polar decomposition)等。这篇文章主要说下奇异值分解,这个方法在机器学习的一些算法里占有重要地位。
阅读全文

  • 第 1 页 共 1 页
作者的图片

Alan Lee

NLP and Python developer, sometimes datavis, he/him. Stick to what you believe.


author.job


北京