前面 有篇博文讲了多层感知器,也就是一般的前馈神经网络,文章里使用 CIFAR10 数据集得到的测试准确率是 46.98%。今天我们使用更适合处理图像的卷积神经网络来处理相同的数据集 - CIFAR10,来看下准确率能达到多少。
本文代码基于 TensorFlow 的官方文档 做了些许修改,完整代码及结果图片可从 这里 下载。
这篇 文章是对本文的一个升级,增加了 TensorBoard 的实现,可以在浏览器中查看可视化结果,包括准确率、损失、计算图、训练时间和内存信息等。
阅读全文前面 有篇博文讲了多层感知器,也就是一般的前馈神经网络,文章里使用 CIFAR10 数据集得到的测试准确率是 46.98%。今天我们使用更适合处理图像的卷积神经网络来处理相同的数据集 - CIFAR10,来看下准确率能达到多少。
本文代码基于 TensorFlow 的官方文档 做了些许修改,完整代码及结果图片可从 这里 下载。
这篇 文章是对本文的一个升级,增加了 TensorBoard 的实现,可以在浏览器中查看可视化结果,包括准确率、损失、计算图、训练时间和内存信息等。
阅读全文主成分分析(PCA)是一种常用的数据降维方法,可以将高维数据在二维或者三维可视化呈现。具体原理我在这里就不再详述,网上有很多教程都不错,可以参考 这里 或者 PCA 的维基百科页面。
阅读全文之前 写过一篇在 ubuntu 下安装 TensorFlow 的教程,那个时候 TensorFlow 官方还不支持 Windows 系统,虽然可以通过其他方法安装,但是终究不是原生的,而且安装过程繁琐易错。好消息是,Google官方在11月29号的开发者博客中宣布新的版本(0.12)将 增加对Windows的支持,我11月30号知道的,立马就安装试了试,安装过程非常简单,不过也有一些需要手动调整。
这里我会列出对本文的更新。
Cannot remove entries from nonexistent file
的解决办法。ImportError: DLL load failed: 找不到指定的模块。
、ImportError: No module named '_pywrap_tensorflow_internal'
和 ImportError: No module named 'tensorflow.python.pywrap_tensorflow_internal
的时候` 的解决办法。TensorFlow 有两个版本:CPU 版本和 GPU 版本。GPU 版本需要 CUDA 和 cuDNN 的支持,CPU 版本不需要。如果你要安装 GPU 版本,请先确认你的显卡支持 CUDA。我安装的是 GPU 版本,采用 pip 安装方式,所以就以 GPU 安装为例,CPU 版本只不过不需要安装 CUDA 和 cuDNN。
pip -V
查看当前 pip
版本,用 python -m pip install -U pip
升级pip
。此外,建议安装 Anaconda,因为这个集成了很多科学计算所必需的库,能够避免很多依赖问题,安装教程可以参考 这里。
以上条件符合,那么恭喜你可以开始下载 CUDA 和 cuDNN 的安装包了,注意版本号会由于 TensorFlow 不同版本有变化,此处请结合下面的安装 CUDA 和安装 cuDNN 说明)。
由于 Google 那帮人已经把 TensorFlow 打成了一个 pip 安装包,所以现在可以用正常安装包的方式安装 TensorFlow 了,就是进入命令行执行下面这一条简单的语句:1
2
3
4
5# GPU版本
pip3 install --upgrade tensorflow-gpu
# CPU版本
pip3 install --upgrade tensorflow
然后就开始安装了,速度视网速而定。
安装网之后你试着在 Python 中import tensorflow
会告诉你没有找到 CUDA 和 cuDNN,所以下一步就是安装这两个东西。
- TensorFlow 1.6:CUDA 9.0
- TensorFlow 1.13.1:CUDA 10.0
这个也是很简单的,首先根据上面的版本去官网下载对应的安装包(~ 1.4 GB)。下载完那个 exe 文件就是 CUDA 的安装程序,直接双击执行就可以了,就像安装正常的其他软件一样,安装过程屏幕可能会闪烁,不要紧,而且安装时间有点长。
安装完之后系统变量会自动为你添加上,这个不用管。
测试一下是否安装成功,命令行输入 nvcc -V
,看到版本信息就表示安装成功了。
NLP and Python developer, sometimes datavis, he/him. Stick to what you believe.
author.job